Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(6)2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35326421

RESUMO

The statin drug target, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), is strongly linked to body mass index (BMI), yet how HMGCR influences BMI is not understood. In mammals, studies of peripheral HMGCR have not clearly identified a role in BMI maintenance and, despite considerable central nervous system expression, a function for central HMGCR has not been determined. Similar to mammals, Hmgcr is highly expressed in the Drosophila melanogaster brain. Therefore, genetic and pharmacological studies were performed to identify how central Hmgcr regulates Drosophila energy metabolism and feeding behavior. We found that inhibiting Hmgcr, in insulin-producing cells of the Drosophila pars intercerebralis (PI), the fly hypothalamic equivalent, significantly reduces the expression of insulin-like peptides, severely decreasing insulin signaling. In fact, reducing Hmgcr expression throughout development causes decreased body size, increased lipid storage, hyperglycemia, and hyperphagia. Furthermore, the Hmgcr induced hyperphagia phenotype requires a conserved insulin-regulated α-glucosidase, target of brain insulin (tobi). In rats and mice, acute inhibition of hypothalamic Hmgcr activity stimulates food intake. This study presents evidence of how central Hmgcr regulation of metabolism and food intake could influence BMI.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Animais , Drosophila melanogaster/metabolismo , Ingestão de Alimentos , Metabolismo Energético , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Hiperfagia , Insulina/metabolismo , Mamíferos/metabolismo , Camundongos , Ratos
2.
Curr Biol ; 31(18): 4076-4087.e5, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34329588

RESUMO

Animals need to balance competitive behaviors to maintain internal homeostasis. The underlying mechanisms are complex but typically involve neuroendocrine signaling. Using Drosophila, we systematically manipulated signaling between energy-mobilizing endocrine cells producing adipokinetic hormone (AKH), octopaminergic neurons, and the energy-storing fat body to assess whether this neuroendocrine axis involved in starvation-induced hyperactivity also balances activity levels under ad libitum access to food. Our results suggest that AKH signals via two divergent pathways that are mutually competitive in terms of activity and rest. AKH increases activity via the octopaminergic system during the day, while it prevents high activity levels during the night by signaling to the fat body. This regulation involves feedback signaling from octopaminergic neurons to AKH-producing cells (APCs). APCs are known to integrate a multitude of metabolic and endocrine signals. Our results add a new facet to the versatile regulatory functions of APCs by showing that their output contributes to shape the daily activity pattern under ad libitum access to food.


Assuntos
Hormônios de Inseto , Inanição , Animais , Drosophila/metabolismo , Homeostase , Hormônios de Inseto/metabolismo , Neurônios/metabolismo , Ácido Pirrolidonocarboxílico/metabolismo , Transdução de Sinais , Inanição/metabolismo
3.
Neurosci Biobehav Rev ; 120: 1-12, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33242563

RESUMO

The assessment of behavioral outcomes is a central component of neuroscientific research, which has required continuous technological innovations to produce more detailed and reliable findings. In this article, we provide an in-depth review on the progress and future implications for three model organisms (mouse, rat, and Drosophila) essential to our current understanding of behavior. By compiling a comprehensive catalog of popular assays, we are able to compare the diversity of tasks and usage of these animal models in behavioral research. This compilation also allows for the evaluation of existing state-of-the-art methods and experimental applications, including optogenetics, machine learning, and high-throughput behavioral assays. We go on to discuss novel apparatuses and inter-species analyses for centrophobism, feeding behavior, aggression and mating paradigms, with the goal of providing a unique view on comparative behavioral research. The challenges and recent advances are evaluated in terms of their translational value, ethical procedures, and trustworthiness for behavioral research.


Assuntos
Neurociências , Roedores , Agressão , Animais , Pesquisa Comportamental , Camundongos , Modelos Animais , Ratos
4.
Elife ; 82019 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-31226244

RESUMO

The regulation of feeding plays a key role in determining the fitness of animals through its impact on nutrition. Elucidating the circuit basis of feeding and related behaviors is an important goal in neuroscience. We recently used a system for closed-loop optogenetic manipulation of neurons contingent on the feeding behavior of Drosophila to dissect the impact of a specific subset of taste neurons on yeast feeding. Here, we describe the development and validation of this system, which we term the optoPAD. We use the optoPAD to induce appetitive and aversive effects on feeding by activating or inhibiting gustatory neurons in closed-loop - effectively creating virtual taste realities. The use of optogenetics allowed us to vary the dynamics and probability of stimulation in single flies and assess the impact on feeding behavior quantitatively and with high throughput. These data demonstrate that the optoPAD is a powerful tool to dissect the circuit basis of feeding behavior, allowing the efficient implementation of sophisticated behavioral paradigms to study the mechanistic basis of animals' adaptation to dynamic environments.


Assuntos
Comportamento Alimentar/fisiologia , Neurônios/fisiologia , Optogenética , Paladar/genética , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Percepção Gustatória/genética
5.
PLoS Biol ; 17(3): e2006146, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30860988

RESUMO

Stress responses are crucial processes that require activation of genetic programs that protect from the stressor. Stress responses are also energy consuming and can thus be deleterious to the organism. The mechanisms coordinating energy consumption during stress response in multicellular organisms are not well understood. Here, we show that loss of the epigenetic regulator G9a in Drosophila causes a shift in the transcriptional and metabolic responses to oxidative stress (OS) that leads to decreased survival time upon feeding the xenobiotic paraquat. During OS exposure, G9a mutants show overactivation of stress response genes, rapid depletion of glycogen, and inability to access lipid energy stores. The OS survival deficiency of G9a mutants can be rescued by a high-sugar diet. Control flies also show improved OS survival when fed a high-sugar diet, suggesting that energy availability is generally a limiting factor for OS tolerance. Directly limiting access to glycogen stores by knocking down glycogen phosphorylase recapitulates the OS-induced survival defects of G9a mutants. We propose that G9a mutants are sensitive to stress because they experience a net reduction in available energy due to (1) rapid glycogen use, (2) an inability to access lipid energy stores, and (3) an overinduced transcriptional response to stress that further exacerbates energy demands. This suggests that G9a acts as a critical regulatory hub between the transcriptional and metabolic responses to OS. Our findings, together with recent studies that established a role for G9a in hypoxia resistance in cancer cell lines, suggest that G9a is of wide importance in controlling the cellular and organismal response to multiple types of stress.


Assuntos
Histona Metiltransferases/metabolismo , Animais , Antioxidantes/metabolismo , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Epigênese Genética/genética , Glicogênio Fosforilase/genética , Glicogênio Fosforilase/metabolismo , Histona Metiltransferases/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Masculino , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Filogenia , Análise de Sequência de RNA
6.
Elife ; 72018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29393045

RESUMO

To optimize fitness, animals must dynamically match food choices to their current needs. For drosophilids, yeast fulfills most dietary protein and micronutrient requirements. While several yeast metabolites activate known gustatory receptor neurons (GRNs) in Drosophila melanogaster, the chemosensory channels mediating yeast feeding remain unknown. Here we identify a class of proboscis GRNs required for yeast intake. Within this class, taste peg GRNs are specifically required to sustain yeast feeding. Sensillar GRNs, however, mediate feeding initiation. Furthermore, the response of yeast GRNs, but not sweet GRNs, is enhanced following deprivation from amino acids, providing a potential basis for protein-specific appetite. Although nutritional and reproductive states synergistically increase yeast appetite, reproductive state acts independently of nutritional state, modulating processing downstream of GRNs. Together, these results suggest that different internal states act at distinct levels of a dedicated gustatory circuit to elicit nutrient-specific appetites towards a complex, ecologically relevant protein source.


Assuntos
Aminoácidos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Comportamento Alimentar , Proteostase , Receptores de Superfície Celular/fisiologia , Leveduras/metabolismo , Animais , Proteínas de Drosophila/fisiologia , Leveduras/química
7.
PLoS Biol ; 15(4): e2000862, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28441450

RESUMO

Choosing the right nutrients to consume is essential to health and wellbeing across species. However, the factors that influence these decisions are poorly understood. This is particularly true for dietary proteins, which are important determinants of lifespan and reproduction. We show that in Drosophila melanogaster, essential amino acids (eAAs) and the concerted action of the commensal bacteria Acetobacter pomorum and Lactobacilli are critical modulators of food choice. Using a chemically defined diet, we show that the absence of any single eAA from the diet is sufficient to elicit specific appetites for amino acid (AA)-rich food. Furthermore, commensal bacteria buffer the animal from the lack of dietary eAAs: both increased yeast appetite and decreased reproduction induced by eAA deprivation are rescued by the presence of commensals. Surprisingly, these effects do not seem to be due to changes in AA titers, suggesting that gut bacteria act through a different mechanism to change behavior and reproduction. Thus, eAAs and commensal bacteria are potent modulators of feeding decisions and reproductive output. This demonstrates how the interaction of specific nutrients with the microbiome can shape behavioral decisions and life history traits.


Assuntos
Acetobacter/fisiologia , Aminoácidos Essenciais/metabolismo , Drosophila melanogaster/microbiologia , Comportamento Alimentar , Microbioma Gastrointestinal , Lactobacillus/fisiologia , Simbiose , Acetobacter/genética , Acetobacter/crescimento & desenvolvimento , Acetobacteraceae/genética , Acetobacteraceae/crescimento & desenvolvimento , Acetobacteraceae/fisiologia , Aminoácidos Essenciais/administração & dosagem , Aminoácidos Essenciais/análise , Aminoácidos Essenciais/deficiência , Animais , Animais Geneticamente Modificados , Regulação do Apetite , Comportamento Animal , Misturas Complexas/administração & dosagem , Misturas Complexas/química , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Enterococcus faecalis/genética , Enterococcus faecalis/crescimento & desenvolvimento , Enterococcus faecalis/fisiologia , Feminino , Preferências Alimentares , Técnicas de Inativação de Genes , Interações Hospedeiro-Parasita , Lactobacillus/genética , Lactobacillus/crescimento & desenvolvimento , Oviposição , Especificidade da Espécie , Fermento Seco/química
8.
Front Neuroinform ; 9: 7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25904861

RESUMO

The design of modern scientific experiments requires the control and monitoring of many different data streams. However, the serial execution of programming instructions in a computer makes it a challenge to develop software that can deal with the asynchronous, parallel nature of scientific data. Here we present Bonsai, a modular, high-performance, open-source visual programming framework for the acquisition and online processing of data streams. We describe Bonsai's core principles and architecture and demonstrate how it allows for the rapid and flexible prototyping of integrated experimental designs in neuroscience. We specifically highlight some applications that require the combination of many different hardware and software components, including video tracking of behavior, electrophysiology and closed-loop control of stimulation.

9.
Cell ; 159(6): 1352-64, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25480298

RESUMO

The global rise in obesity has revitalized a search for genetic and epigenetic factors underlying the disease. We present a Drosophila model of paternal-diet-induced intergenerational metabolic reprogramming (IGMR) and identify genes required for its encoding in offspring. Intriguingly, we find that as little as 2 days of dietary intervention in fathers elicits obesity in offspring. Paternal sugar acts as a physiological suppressor of variegation, desilencing chromatin-state-defined domains in both mature sperm and in offspring embryos. We identify requirements for H3K9/K27me3-dependent reprogramming of metabolic genes in two distinct germline and zygotic windows. Critically, we find evidence that a similar system may regulate obesity susceptibility and phenotype variation in mice and humans. The findings provide insight into the mechanisms underlying intergenerational metabolic reprogramming and carry profound implications for our understanding of phenotypic variation and evolution.


Assuntos
Modelos Animais de Doenças , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Epigênese Genética , Obesidade/genética , Animais , Metabolismo dos Carboidratos , Dieta , Embrião não Mamífero/metabolismo , Cor de Olho , Feminino , Predisposição Genética para Doença , Heterocromatina/metabolismo , Humanos , Masculino , Camundongos , Obesidade/metabolismo , Espermatozoides/metabolismo
10.
Nat Commun ; 5: 4560, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-25087594

RESUMO

Food ingestion is one of the defining behaviours of all animals, but its quantification and analysis remain challenging. This is especially the case for feeding behaviour in small, genetically tractable animals such as Drosophila melanogaster. Here, we present a method based on capacitive measurements, which allows the detailed, automated and high-throughput quantification of feeding behaviour. Using this method, we were able to measure the volume ingested in single sips of an individual, and monitor the absorption of food with high temporal resolution. We demonstrate that flies ingest food by rhythmically extending their proboscis with a frequency that is not modulated by the internal state of the animal. Instead, hunger and satiety homeostatically modulate the microstructure of feeding. These results highlight similarities of food intake regulation between insects, rodents, and humans, pointing to a common strategy in how the nervous systems of different animals control food intake.


Assuntos
Drosophila melanogaster/fisiologia , Ingestão de Alimentos/fisiologia , Comportamento Alimentar/fisiologia , Fome/fisiologia , Reconhecimento Automatizado de Padrão/métodos , Saciação/fisiologia , Animais , Capacitância Elétrica , Feminino , Medições Luminescentes/instrumentação , Medições Luminescentes/métodos , Masculino , Sacarose
12.
Front Neurosci ; 7: 12, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23407678

RESUMO

To survive and successfully reproduce animals need to maintain a balanced intake of nutrients and energy. The nervous system of insects has evolved multiple mechanisms to regulate feeding behavior. When animals are faced with the choice to feed, several decisions must be made: whether or not to eat, how much to eat, what to eat, and when to eat. Using Drosophila melanogaster substantial progress has been achieved in understanding the neuronal and molecular mechanisms controlling feeding decisions. These feeding decisions are implemented in the nervous system on multiple levels, from alterations in the sensitivity of peripheral sensory organs to the modulation of memory systems. This review discusses methodologies developed in order to study insect feeding, the effects of neuropeptides and neuromodulators on feeding behavior, behavioral evidence supporting the existence of internal energy sensors, neuronal and molecular mechanisms controlling protein intake, and finally the regulation of feeding by circadian rhythms and sleep. From the discussed data a conceptual framework starts to emerge which aims to explain the molecular and neuronal processes maintaining the stability of the internal milieu.

13.
Front Syst Neurosci ; 6: 49, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22754507

RESUMO

To investigate how hippocampal neurons code behaviorally salient stimuli, we recorded from neurons in the CA1 region of hippocampus in rats while they learned to associate the presence of sound with water reward. Rats learned to alternate between two reward ports at which, in 50% of the trials, sound stimuli were presented followed by water reward after a 3-s delay. Sound at the water port predicted subsequent reward delivery in 100% of the trials and the absence of sound predicted reward omission. During this task, 40% of recorded neurons fired differently according to which of the two reward ports the rat was visiting. A smaller fraction of neurons demonstrated onset response to sound/nosepoke (19%) and reward delivery (24%). When the sounds were played during passive wakefulness, 8% of neurons responded with short latency onset responses; 25% of neurons responded to sounds when they were played during sleep. During sleep the short-latency responses in hippocampus are intermingled with long lasting responses which in the current experiment could last for 1-2 s. Based on the current findings and the results of previous experiments we described the existence of two types of hippocampal neuronal responses to sounds: sound-onset responses with very short latency and longer-lasting sound-specific responses that are likely to be present when the animal is actively engaged in the task.

14.
J Neurophysiol ; 108(10): 2717-24, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22773778

RESUMO

Because acoustic landscapes are complex and rapidly changing, auditory systems have evolved mechanisms that permit rapid detection of novel sounds, sound source segregation, and perceptual restoration of sounds obscured by noise. Perceptual restoration is particularly important in noisy environments because it allows organisms to track sounds over time even when they are masked. The continuity illusion is a striking example of perceptual restoration with sounds perceived as intact even when parts of them have been replaced by gaps and rendered inaudible by being masked by an extraneous sound. The mechanisms of auditory filling-in are complex and are currently not well-understood. The present study used the high temporal resolution of EEG to examine brain activity related to continuity illusion perception. Masking noise loudness was adjusted individually for each subject so that physically identical sounds on some trials elicited a continuity illusion (failure to detect a gap in a sound) and on other trials resulted in correct gap detection. This design ensured that any measurable differences in brain activity would be due to perceptual differences rather than physical differences among stimuli. We found that baseline activity recorded immediately before presentation of the stimulus significantly predicted the occurrence of the continuity illusion in 10 out of 14 participants based on power differences in γ-band EEG (34-80 Hz). Across all participants, power in the ß and γ (12- to 80-Hz range) was informative about the subsequent perceptual decision. These data suggest that a subject's baseline brain state influences the strength of continuity illusions.


Assuntos
Ritmo beta , Potenciais Evocados Auditivos , Ilusões/fisiologia , Mascaramento Perceptivo , Adolescente , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Ruído
15.
J Neurophysiol ; 107(7): 1822-34, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22219030

RESUMO

To investigate how hippocampal neurons encode sound stimuli, and the conjunction of sound stimuli with the animal's position in space, we recorded from neurons in the CA1 region of hippocampus in rats while they performed a sound discrimination task. Four different sounds were used, two associated with water reward on the right side of the animal and the other two with water reward on the left side. This allowed us to separate neuronal activity related to sound identity from activity related to response direction. To test the effect of spatial context on sound coding, we trained rats to carry out the task on two identical testing platforms at different locations in the same room. Twenty-one percent of the recorded neurons exhibited sensitivity to sound identity, as quantified by the difference in firing rate for the two sounds associated with the same response direction. Sensitivity to sound identity was often observed on only one of the two testing platforms, indicating an effect of spatial context on sensory responses. Forty-three percent of the neurons were sensitive to response direction, and the probability that any one neuron was sensitive to response direction was statistically independent from its sensitivity to sound identity. There was no significant coding for sound identity when the rats heard the same sounds outside the behavioral task. These results suggest that CA1 neurons encode sound stimuli, but only when those sounds are associated with actions.


Assuntos
Discriminação Psicológica/fisiologia , Hipocampo/citologia , Neurônios/fisiologia , Localização de Som/fisiologia , Percepção Espacial/fisiologia , Estimulação Acústica , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Comportamento Animal , Mapeamento Encefálico , Masculino , Ratos , Ratos Wistar , Tempo de Reação/fisiologia , Som , Análise Espectral
16.
PLoS One ; 6(2): e17266, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21387016

RESUMO

Important sounds can be easily missed or misidentified in the presence of extraneous noise. We describe an auditory illusion in which a continuous ongoing tone becomes inaudible during a brief, non-masking noise burst more than one octave away, which is unexpected given the frequency resolution of human hearing. Participants strongly susceptible to this illusory discontinuity did not perceive illusory auditory continuity (in which a sound subjectively continues during a burst of masking noise) when the noises were short, yet did so at longer noise durations. Participants who were not prone to illusory discontinuity showed robust early electroencephalographic responses at 40-66 ms after noise burst onset, whereas those prone to the illusion lacked these early responses. These data suggest that short-latency neural responses to auditory scene components reflect subsequent individual differences in the parsing of auditory scenes.


Assuntos
Vias Auditivas/fisiologia , Percepção Auditiva/fisiologia , Individualidade , Tempo de Reação/fisiologia , Som , Estimulação Acústica/psicologia , Adolescente , Adulto , Feminino , Audição/fisiologia , Humanos , Masculino , Ruído , Adulto Jovem
17.
PLoS One ; 6(1): e16462, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21305039

RESUMO

Understanding the mechanisms by which sensory experiences are stored remains a compelling challenge for neuroscience. Previous work has described how the activity of neurons in the sensory cortex allows rats to discriminate the physical features of an object contacted with their whiskers. But to date there is no evidence about how neurons represent the behavioural significance of tactile stimuli, or how they are encoded in memory. To investigate these issues, we recorded single-unit firing and local field potentials from the CA1 region of hippocampus while rats performed a task in which tactile stimuli specified reward location. On each trial the rat touched a textured plate with its whiskers, and then turned towards the Left or Right water spout. Two textures were associated with each reward location. To determine the influence of the rat's position on sensory coding, we placed it on a second platform in the same room where it performed the identical texture discrimination task. Over 25 percent of the sampled neurons encoded texture identity--their firing differed for two stimuli associated with the same reward location--and over 50 percent of neurons encoded the reward location with which the stimuli were associated. The neuronal population carried texture and reward location signals continuously, from the moment of stimulus contact until the end of reward collection. The set of neurons discriminating between one texture pair was found to be independent of, and partially overlapping, the set of neurons encoding the discrimination between a different texture pair. In a given neuron, the presence of a tactile signal was uncorrelated with the presence, magnitude, or timing of reward location signals. These experiments indicate that neurons in CA1 form a texture representation independently of the action the stimulus is associated with and retain the stimulus representation through reward collection.


Assuntos
Comportamento Animal/fisiologia , Hipocampo/fisiologia , Recompensa , Tato/fisiologia , Animais , Região CA1 Hipocampal , Discriminação Psicológica/fisiologia , Memória , Neurônios , Ratos , Vibrissas
18.
J Neurophysiol ; 105(4): 1950-62, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21307326

RESUMO

The rodent whisker system has become the leading experimental paradigm for the study of active sensing. Thanks to more sophisticated behavioral paradigms, progressively better neurophysiological methods, and improved video hardware/software, there is now the prospect of defining the precise connection between the sensory apparatus and brain activity in awake, exploring animals. Achieving this ambitious goal requires quantitative, objective characterization of head and whisker kinematics. This study presents the methodology and potential uses of a new automated motion analysis routine. The program provides full quantification of head orientation and translation, as well as the angle, frequency, amplitude, and bilateral symmetry of whisking. The system operates without any need for manual tracing by the user. Quantitative comparison to whisker detection by expert humans indicates that the program's correct detection rate is at >95% even on animals with all whiskers intact. Particular attention has been paid to obtaining reliable performance under nonoptimal lighting or video conditions and at frame rates as low as 100. Variation of the zoom across time is compensated for without user intervention. The program adapts automatically to the size and shape of different species. The outcome of our testing indicates that the program can be a valuable tool in quantifying rodent sensorimotor behavior.


Assuntos
Comportamento Animal/fisiologia , Retroalimentação Sensorial/fisiologia , Movimentos da Cabeça/fisiologia , Vibrissas/fisiologia , Gravação em Vídeo , Algoritmos , Animais , Fenômenos Biomecânicos , Masculino , Atividade Motora/fisiologia , Ratos , Ratos Wistar
19.
PLoS Biol ; 5(11): e305, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18001152

RESUMO

Rats and mice palpate objects with their whiskers to generate tactile sensations. This form of active sensing endows the animals with the capacity for fast and accurate texture discrimination. The present work is aimed at understanding the nature of the underlying cortical signals. We recorded neuronal activity from barrel cortex while rats used their whiskers to discriminate between rough and smooth textures. On whisker contact with either texture, firing rate increased by a factor of two to ten. Average firing rate was significantly higher for rough than for smooth textures, and we therefore propose firing rate as the fundamental coding mechanism. The rat, however, cannot take an average across trials, but must make an immediate decision using the signals generated on each trial. To estimate single-trial signals, we calculated the mutual information between stimulus and firing rate in the time window leading to the rat's observed choice. Activity during the last 75 ms before choice transmitted the most informative signal; in this window, neuronal clusters carried, on average, 0.03 bits of information about the stimulus on trials in which the rat's behavioral response was correct. To understand how cortical activity guides behavior, we examined responses in incorrect trials and found that, in contrast to correct trials, neuronal firing rate was higher for smooth than for rough textures. Analysis of high-speed films suggested that the inappropriate signal on incorrect trials was due, at least in part, to nonoptimal whisker contact. In conclusion, these data suggest that barrel cortex firing rate on each trial leads directly to the animal's judgment of texture.


Assuntos
Comportamento Animal/fisiologia , Discriminação Psicológica/fisiologia , Neurônios Aferentes/fisiologia , Córtex Somatossensorial/fisiologia , Tato/fisiologia , Vibrissas/inervação , Animais , Eletrofisiologia , Potenciais Evocados , Ratos , Ratos Wistar , Tempo de Reação , Propriedades de Superfície , Vibrissas/fisiologia , Gravação de Videoteipe
20.
J Neurophysiol ; 95(2): 1263-73, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16236777

RESUMO

To study the neurophysiology of large-scale spatial cognition, we analyzed the neuronal activity of navigating homing pigeons. This is not possible using conventional radio-telemetry suitable for short distances only. Therefore we developed a miniaturized data logger ("neurologger") that can be carried by a homing pigeon on its back, in conjunction with a micro-global position system (GPS) logger recording the spatial position of the bird. In its present state, the neurologger permits recording from up to eight single-ended or differential electrodes in a walking or flying pigeon. Inputs from eight independent channels are preamplified, band-pass filtered, and directed to an eight-channel, 10-bit analog-digital converter of the microcontroller storing data on a "Multimedia" or "Secure Digital" card. For electroencephalography (EEG), the logger permits simultaneous recordings of up to eight channels during maximally 47 h, depending on memory, while single unit activity from two channels can be stored over 9 h. The logger permits single unit separation from recorded multiunit signals. The neurologger with GPS represents a better alternative to telemetry that will eventually permit to record neuronal activity during cognitive and innate behavior of many species moving freely in their habitats but will also permit automated high-throughput screening of EEG in the laboratory.


Assuntos
Potenciais de Ação/fisiologia , Columbidae/fisiologia , Eletroencefalografia/instrumentação , Sistemas de Informação Geográfica/instrumentação , Armazenamento e Recuperação da Informação/métodos , Locomoção/fisiologia , Monitorização Ambulatorial/instrumentação , Animais , Eletroencefalografia/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Geografia , Miniaturização , Monitorização Ambulatorial/métodos , Comunicações Via Satélite/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...